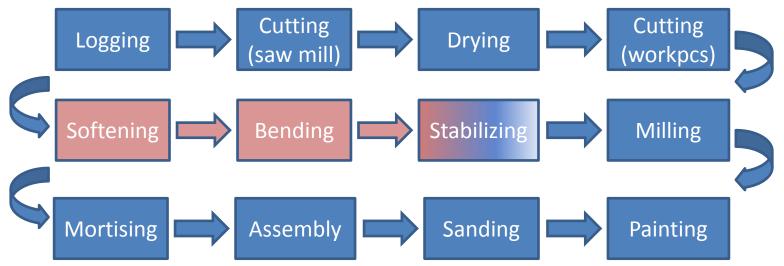
Solid Wood Bending Process Steps from Tree to Chair

Introduction (1)

- Solid Wood Bending was developed by the German Michael Thonet around 1840 in Vienna (Austria) for the production of contemporary chairs.
- The so called "Thonet Method" to bend wood uses a strap along the outside of the bending to avoid tensile stress.
- Within 50 years after the presentation of the Thonet chair "No. 14" (called "Vienna Coffe House Chair") in 1850, Thonet produced approx. 50 Mio. units just of this type.
- While the back part of No. 14 still is a manual bending, most other bend parts can be made by using bending machines.
- Bending wood avoids waste and increases the yield of the material.
- Becaused of the compression during the process, bended parts have better mechanical properties (elasticity, durability, stability) then from any other wood forming technology (formed plywood, cutted solid wood, ...).

Introduction (2)

- A bend shop consists of
 - Softening device (autoclaves & steam generator)
 - Bending Machine
 - Space for bended parts during stabilisation
 - Everything else are standard machines
 & devices for the chair production



- Typical application for solid wood bending:
 - production of chairs
 - toboggans and sledges
- No special process required apart from bending (softening, bending, 1st phase of stabilizing)

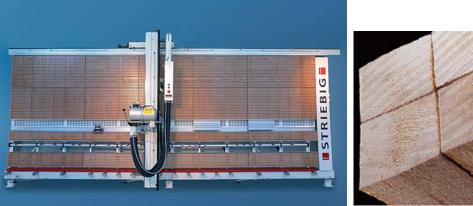
Preparing Wood (1)

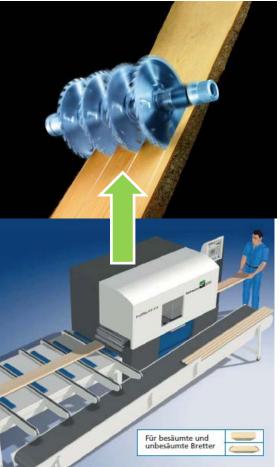
- Harvesting Wood
 - logging
 - forwarding

Preparing Wood (2)

 Cutting (saw mill)

- Drying (kiln dryer)
 - for furniture production mc ≈ 12%
 - for wood bending mc ≈ 15 ... 20%


7


• cutting (preparing specific workpieces) for

- table legs
- table frames

Preparing Wood (3)

- chair legs
- misc. chair parts
 (frame, backrest, armrest, ...)

Solid Wood Bending

Preparing Wood (4)

Solid Wood Bending (1)

softening / steaming

Softening approx. 1 ... 2 min per mm wood thickness

Solid Wood Bending

Autoclaves available in different sizes acording to required production capacity, e.g.:

- Ø 600 mm
- Ø 800 mm
- L 1 000 ... 2 000 mm
- steam generator
 12 ... 54 kW
- Compact unit with steam generator 12 kW & autoclave
 Ø 600 mm x 1200 mm

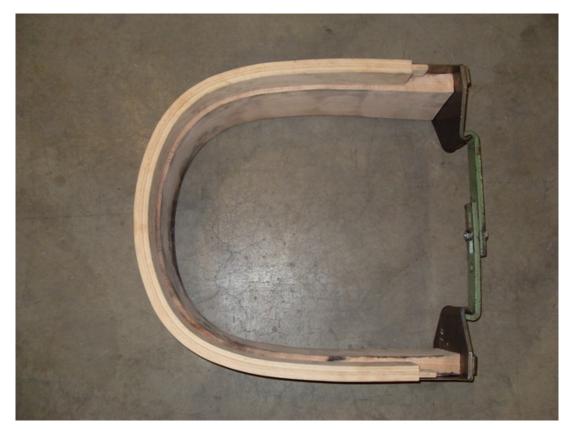
Solid Wood Bending (2)

bending

A wide range of bending machines available depending on shape and thickness of workpiece,

- for U shapes (Stuzama)
 L 1200 ... 2000 mm
- for O bendings (Rubima)
 L 2000 ... 3500 mm

Manual bending reasonable for low production volume.


Fig.: Stuzama II solid wood bending machine and parts spectrum

Bending cycle time approx. 30 ... 60 s, depending on shape & wood thickness

Solid Wood Bending (3)

stabilizing

For the bending process, a strap and clamp is needed (1 per bending cycle).

The strap & clamp stay with the workpiece until this has cooled down during stabilzing. Then, clamp & strap are removed.

Fig.: Bended parts- raw workpiece (below), finished chair frame (top).

Stabilizing time approx. 30 ... 90 min, depending on thickness & moisture

Post Processing (1)

Drying wood after bending does not require a specific installation. It can be done by natural ventilation (time depending on climate) or in a kiln or a vaccum dryer (fast). However, it should have max. 12% moisture content before further machining.

• Milling to shape (manual)

For post-processing of bended parts, the woodworking machine offers a wide range of manual, semi- automatic and CNC machines. Basically all machines for chair production can be used (see following pages).

11/08/2012

Solid Wood Bending

Post Processing (3)

• Milling to shape (automatic line)

A typical supplier for chair production machines is Pade, Italy.

Post Processing (4)

• Mortising / Slots for joints

Post Processing (5)

- Finishing
 - Vibratory finishing (straight tubs) widely used for chair lines
- Painting

- High volume: paint line
- Low volume: single spray booth

Thonet Nr. (2)14. The most typical bentwood chair is the most famous and most built chair in the world.

Typical Bentwood Chairs (1)

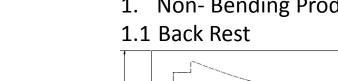
Typical Bentwood Chairs (2)

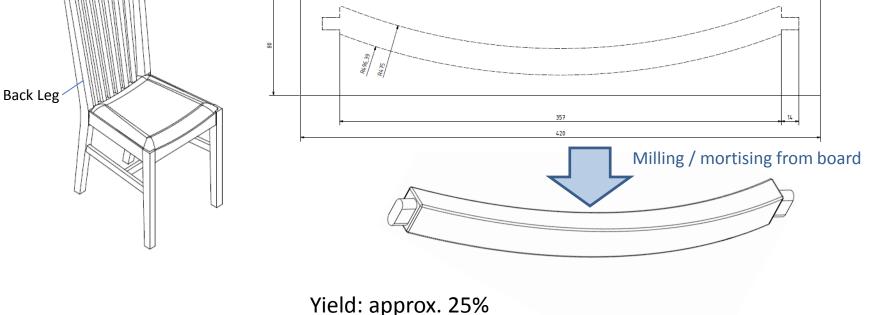
Bentwood is extremely tolerant to outdoor exposure

- Bentwood chairs are made from hardwoods (most typical: Beech).
- Teak and Hevea (Rubberwood) can be used, but with some limitations in radius.
- Softwoods (spruce, pine, ...) are not used for bending.

Further typical bentwood application

• Bentwood toboggans and sledges are typically made from Ash, Beech.


GHE bavaria


• Typical Chair:

Back Rest

Bending Practice (1)

1. Non- Bending Production:

Board: 8 x 42 x 3,3 cm³ = 1.109 cm³

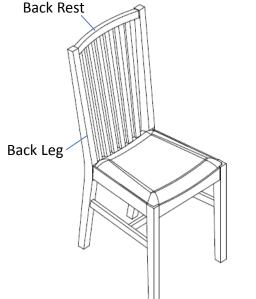
21

Yield: approx. 64%

1. Non- Bending Production:

641,71

165°


438,31

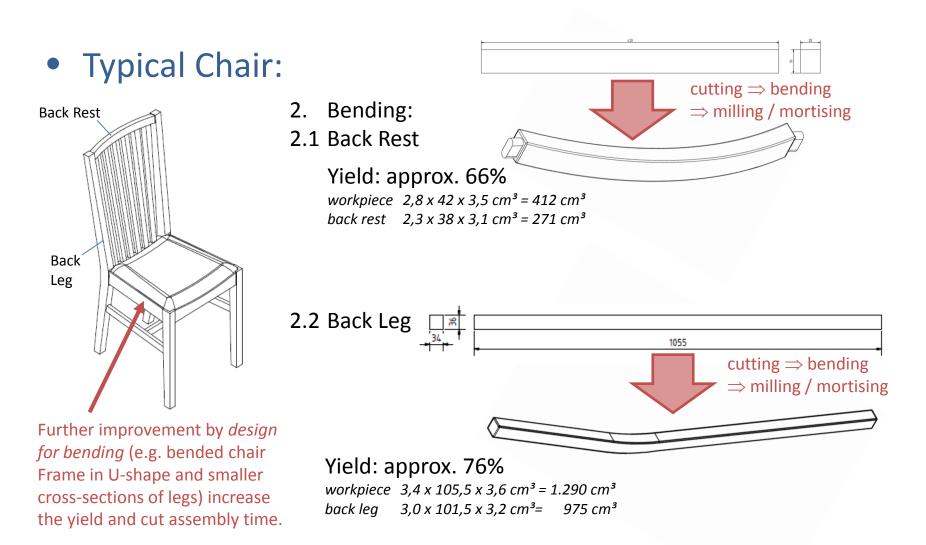
1.2 Back Leg

8

upper: 3,4 x 64,2 x 3,8 cm³ = 830 cm³ lower: 3,4 x 43,9 x 4,6 cm³ = 687 cm³ total: 1.517 cm³ back leg: 3,0 x 101,5 x 3,2 cm³ = 975 cm³

Bending Practice (2)

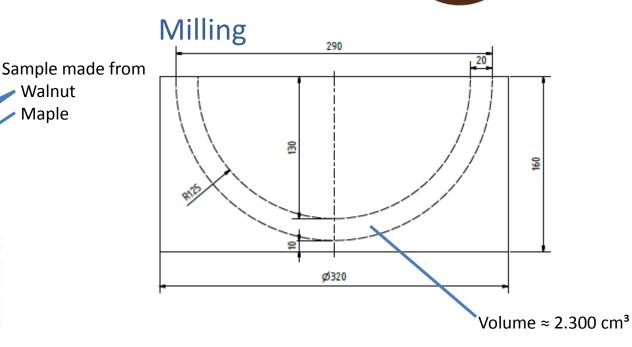
46


7

2 pieces cutting & bonding,

milling to shape

Bending Practice (3)



Solid Wood Bending

Material used: 5 boards: $46 \times 12 \times 2 \text{ cm}^3 = 5.520 \text{ cm}^3$ Yield approx. 41,6 %

Material used: 1 block Ø 32 x 16 = 12.868 cm³ Yield approx. 18 %

Walnut

Maple

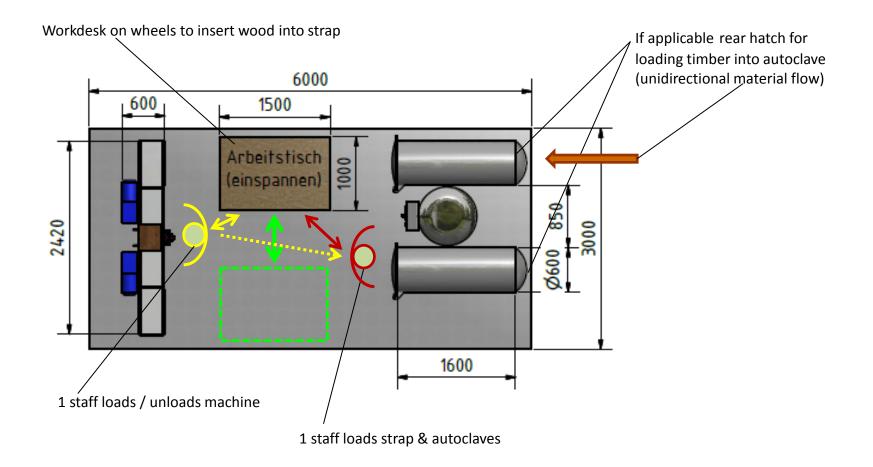
Bending

CASE AND A

Bending Practice (4)

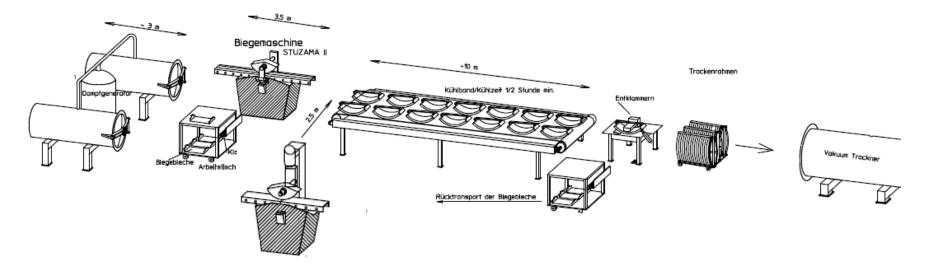
Capacity

<u>GHE bavaria</u>


- Dimension of.. timber (lwh), e.g.: 1200 x **60** x 30 mm³
- Max. operating width, e.g. Stuzama II: 300 mm

➢ 5 pcs. of timber can be bent in one go

- Cycle time / bending approx. 20 ... 60 s (machine, angle)
- Softening equipment:
 - Time for steaming ≈ 1 ... 2 min / mm (initial moisture content?)
 - E.g. @ 30 mm: softening ≈ 30 ... 60 min
 - Number of autoclaves \geq t _{softening} / t _{bending}
- Detailed planning of bending plant by supplier


Flexible Production Cell

Bending Plant

Bending plant for high volume production, featuring:

- two-door autoclaves for unidirectional material flow
- mobile work desk with strap & clamp holder
- 2 bending machines Stuzama VP & II, incl. 1 counter bending device
- stabilizing conveyor
- unclamping section
- Drying carriages

• Production:

✓ Yield usually \ge 66% \implies low waste, less material costs

- ✓ quick process \Rightarrow high output
- ✓ versatile bending equipment
- Design:
 - ✓ light look and feel but high durability
 - ✓ slim design favoured

• Properties

✓ long lasting, durable products of high quality

✓ no splintering when breaking

Information videos available at http://www.youtube.com/user/GHEbavaria

Contact: Dr.- Ing. Otto Eggert **GHEbavaria Maschinen GmbH** Sudetendeutsche Str. 38 80937 München +49 (0)89- 3128 7677 otto.eggert@ghebavaria.de www.ghebavaria.de